1 Worksheet 9: Motion of Charged Particles
in Electromagnetic Fields

In this worksheet we continue exploring electromagnetism using Mathematica
and Fortran. We will now study the motion of charged particles in crossed
electric and magnetic fields. This will necessitate solving ordinary differential
equations (ODE’s). This will be our last worksheet for this semester. We
hope you enjoyed learning more about Mathematica and being introduced to
Fortran. We have by no means covered either one exhaustively, and hopefully
you will continue learning more about computational physics throughout
your education and career.
You will have three class periods for this worksheet.

1.1 Problem Formulation

Consider the motion of a particle with charge ¢ with initial velocity 7y in
an electromagnetic field with electric field E(7,t) and magnetic field B(7,t).
In general, these can be any function of coordinates and time, but in this
worksheet we will restrict our attention to the case when the direction of the
fields is fixed, and their magnitudes oscillate harmonically with a frequency
w and amplitudes 6 £ and ¢ B around Ej and By. If we let the angle between
E and B be 0 and the phase displacement between their oscillation ¢, then
it is quite general to assume that:

B = By(1+6B-coswt)-2 (1)

E = Ey[14+6F - cos(wt+ ¢)] - (Tsinf+ Zcosh)

In the worksheet we will consider only specific simpler cases of this general
case.
The classical motion of the particle in such a field is determined by New-
ton’s equation of motion, where the force is given by:
. F 9= - =
a—m—m(E—l—va) (2)
As usual, we will be interested mostly in qualitative understanding of the
motion, so set £ = 1. We can now write this as an ODE for 7" = 7{(t) with a
given initial velocity (¢t = 0) = iy and starting position 7(t = 0) = 7o:

1

F(O) = 7?0; = _'0

More formally, equation 2 is what is known as a second order initial value
problem (IVP), and there are many numerical techniques aimed at solving
this type of extremely common equation. Mathematica’s function NDSolve
is equipped with a suite of such techniques, and there many Fortran libraries
that solve problems of the type 2 as well.

1.2 Numerical Solution of IVP’s: Euler Method
1.3 First Order IVP’s

When approaching a problem numerically, it is usually wise to write in the
most general (yet specific) way, so that the same numerical algorithm can be
used for a variety of problems. A typical second order IVP has the form:

d*y 7o o dy
_ dy(z,)

—, . :—»/
y<xo) = Yo, dr Yo

Look at equation 3 and identify all the variables in the above equation
before proceeding.
Most numerical methods are tailored for the first order IVP,

@
W~ o))
?7(:50) = ?jo

since any problem of order n, such as 4 (n = 2), can be cast as a first order
problem by introducing auxiliary variables for the n — 1 lower derivatives.
For example, eq. 4 can be written in the form of eq. 5 by introducing a new
variable for the first derivative ¢ (velocity):

dy >

L= fa g) 7w = 0 (6)
j
dr - yaQ('To)_yO

Although this is formally system of first order IVP’s, it is in fact equivalent
to a formal first order IVP for the variable that appends the first derivative

with the variable itself, Y = [77],

— = Fa,Y), Y(z.) = [#T0] (7)

where F(z,Y) =

so that any method that can solve 5 can also solve 6 and thus also 4.
Before proceeding, rewrite equation 3 as a first order IVP (either in the form
6 or 7) and show your result to your teacher or TA.

1.4 Euler’s Method

From here on we will only discuss problem 5, having in mind the previous
discussion. The simplest numerical method for solving such an equation is
Euler’s method, which steps through the independent variable (time) in small
time steps dx from the current value x, using a first-order Taylor expansion
to approximate the dependent variable y at the next time step = + dx:

W) o)+ Tl)

y(x+dr) = y(z) +

It is clear that once we have an equation for f we can start from the
initial point xg and step through time until any desired point to obtain an
approximate solution for the IVP. Euler method is very slow and a very
small step size dz is needed to achieve good results, but it is prototypical of
the commonly used methods, such as Runge-Kutta methods (see Numerical
Recipies for a description, or the file /classes/phy201/RK4.£90).

2 Solution in Mathematica

Mathematica’s function NDSolve implements various algorithms for solving
first and higher order IVP’s. Unlike Fortran, it is a symbolic algebra tool so it
can convert any higher order IVP’s into first order automatically and involve
the appropriate solver to obtain an approximate numerical solution. Look at
the documentation pages under Help to see typical examples of usage.

Just as earlier, in Mathematica it is possible to follow the above physical
formulation very closely without worrying much about the numerical aspects
we discussed above. Our dependent variable is the position of the particle,
r={x[t],y[t],z[t]}, with velocity v={x’ [t],y’ [t],z’ [t]}. Write down
the expressions in equations 1 and then calculate the force in 2 and then
write the system of equations 3.

Now use NDSolve to solve for the orbit of the charged particle in these
simplified cases, and plot the orbit using ParametricPlot3D in each case:

1. Bo =1, Ey =0, 6B = 0, and choose any initial position and velocity.
What is the physical situation in this case? What is the solution, as
you learned in your EM class? Verify your guesses.

By=1,FEy=0,0B =1, w=0.2. Same as above.
By=1,Ey=1,0=0,06B =0, 6E = 0. Explain the results.
By=1,E=1,0=7%,6B=0,0F =0. Explain the results.

SANEE S

Experiment with other combinations that you find interesting.

3 Solution in Fortran

3.1 Euler’s Method

The Fortran solution to this problem will of course take some more efford.
You should write a program or better yet a procedure that uses the Euler
method to integrate a first order IVP of the form 5. Assume that the function
f already exists and will be passed as an argument along with number of
unknowns n_unknowns in the dependent variable ¥ (in our case this is 6—3
coordinates and 3 velocities), the number of time steps n_points to take and
output the solution at, the initial conditions x0 and yO0, as well as the step
size dx:

MODULE IVPSolve
USE Precision

SUBROUTINE Euler (f,y,n_unknowns,n_points,dx,x0,y0)
! The function f is passed as an argument:
INTERFACE
SUBROUTINE f(x,y,y_prime,n_unknowns)
USE Precision
INTEGER n_points
REAL (KIND=wp) :: x
REAL (KIND=wp) , DIMENSION(n_unknowns) :: y, y_prime
END SUBROUTINE f£
END INTERFACE
INTEGER :: n_unknowns,n_points
! Upon exit, this array should contain the solution
REAL (KIND=wp) , DIMENSION(n_unknowns,n_points) :: y
REAL(KIND=wp) :: dx, x0 ! Step size and initial x
REAL (KIND=wp) , DIMENSION(n_unknowns) :: yO ! Initial y

...Declare any needed local variables here...

...Initialize variables for the DO loop...

DO i=1,n_points-1
...Calculate x here in steps of dx starting at xO...
CALL f(x,y(:,1i),y_prime,n_unknowns)
y(:,i+1)=y(:,i)+y_prime*dx ! Euler’s method

END DO
END SUBROUTINE Euler
END MODULE IVPSolve

Feel free to use any other approach. There is ample room for improve-
ment in the above scheme. For example, why output the solution at every
time step, and not every desired n_output steps? This will save on stor-
age, especially if n_points is very large. Also, those that feel up to it can
try coding a more sophisticated algorithm, such as Runge-Kutta and ask for
assistance if needed (you can use the file RK4.£90 as a template).

3.2 The function f

It may be wise to first test your Euler routine on a simple case, such as a
simple harmonic oscillator, % = —kux, by printing (or plotting) your solution
to verify correctness. It will then be one more step to modify the function f
to reflect the problem of the motion of a particle in an electromagnetic field.
The strategy is the same as usual. Make a separate module in which you
will place f, and make any physical parameters it may use, such as Fy and
By, public module variables, so that the main program can set their values
later on. We leave it up to your ingenuity to code the vector expressions
appearing in eq. 1 as you wish. We recommend using Mathematica to help
you in simplifying the expressions before coding them in Fortran.

3.3 Plotting the Solution

Your main program should as usual first set the values of the physical pa-
rameters in the problem. Simply choose one of the cases you analyzed in
Mathematica. Then call the integration routine Euler to obtain the approx-
imate solution.

The module SimpleGraphics has been supplemented with a rouine for
plotting points in 3D, P1ot3D. The documentation in,

http://computation.pa.msu.edu/phy201/Simple Graphics.html

contains the calling interface and an example. So a simple,

CALL Plot3D(x=y(4,:),y=y(5,:),z=y(6,:),...)

will plot the orbit of the particle in Cartesian space. The executable
solution to this assignment is in our class directory. Look at it!

3.4 Advanced: The ready-made module 0DE

There are many publicly available sophisticated Fortran libraries for solving
IVP’s. In Fortran 90, such a library is RKSUITE9QO, which implements adap-
tive Runge-Kutta methods. This library, or its FORTRAN 77 counterpart
RKSUITE, are by no means easy to use, so we have again made a wrapper rou-
tine, ODESolve in the module ODE, found in our class directory. The interface
for the routine is:

subroutine 0DESolve(f,n_eq, x_range,n_points,y0,x,y,relerr, abserr)

interface
subroutine f(x,y,dy)
integer, parameter :: wp=kind(0.0DO)

real (kind=wp), intent(in) :: x
real (kind=wp), dimension(*), intent(in) :: y
real (kind=wp), dimension(*), intent(out) :: dy

end subroutine f
end interface
integer, intent(in) :: n_eq ! Number of unknowns
! The range of values to solve in (as in NDSolve)
! Thus x_range(1)=x0

real (kind=wp), dimension(2), intent(in) :: x_range
integer, intent(in) :: n_points ! Number of output points
real (kind=wp), dimension(n_eq), intent(in) :: yO ! Initial y

I If you need them (for plotting), you can get the
! values of x for which the solution was outputed.
! But note that x=(/(x0+(i-1)*dx,i=1,n_points)/) always:

real (kind=wp), dimension(n_eq), intent(out), optional :: x
real (kind=wp), dimension(n_eq,n_points) :: y ! The solution
real (kind=wp), intent(in) :: relerr ! Desired relative error

! The absolute error is optional:

real (kind=wp), dimension(n_eq), intent(in), optional :: abserr

end subroutine 0ODESolve

Looks complicated? Not at all. Take a look at the example Harmonic.£90
in our class directory. To compile programs that use this module, first do a
(not neccessary if your PC has been recently restarted),

source /classes/phy201/0DE.init

and then append a $0DEv90 to your compilation line. Notice that this
routine requires using double precision numbers, while the plotting routines
require single-precision values. Conversion will be neccessary!

